2,733 research outputs found

    Hydrogen on graphene: Electronic structure, total energy, structural distortions, and magnetism from first-principles calculations

    Get PDF
    Density functional calculations of electronic structure, total energy, structural distortions, and magnetism for hydrogenated single-layer, bilayer, and multi-layer graphene are performed. It is found that hydrogen-induced magnetism can survives only at very low concentrations of hydrogen (single-atom regime) whereas hydrogen pairs with optimized structure are usually nonmagnetic. Chemisorption energy as a function of hydrogen concentration is calculated, as well as energy barriers for hydrogen binding and release. The results confirm that graphene can be perspective material for hydrogen storage. Difference between hydrogenation of graphene, nanotubes, and bulk graphite is discussed.Comment: 8 pages 8 figures (accepted to Phys. Rev. B

    Ariel - Volume 5 Number 2

    Get PDF
    Editors Mark Dembert J.D. Kanofsky Entertainment Editor Robert Breckenridge Gary Kaskey Overseas Editor Mike Sinason Photographer Scott Kastner Staff Ken Jaffe Bob Sklaroff Joseph Sassani Janet Weis

    Manifestation of geometric frustration on magnetic and thermodynamic properties of pyrochlores Sm2X2O7Sm_2X_2O_7 (X=Ti, Zr)

    Full text link
    We present here magnetization, specific heat and Raman studies on single-crystalline specimens of the first pyrochlore member Sm2Ti2O7Sm_2Ti_2O_7 of the rare-earth titanate series. Its analogous compound Sm2Zr2O7Sm_2Zr_2O_7 in the rare-earth zirconate series is also investigated in the polycrystalline form. The Sm spins in Sm2Ti2O7Sm_2Ti_2O_7 remain unordered down to at least T = 0.5 K. The absence of magnetic ordering is attributed to very small values of exchange (θcw 0.26K\theta_{cw} ~ -0.26 K) and dipolar interaction (μeff 0.15μB\mu_{eff} ~ 0.15 \mu_B) between the Sm3+Sm^{3+} spins in this pyrochlore. In contrast, the pyrochlore Sm2Zr2O7Sm_2Zr_2O_7 is characterized by a relatively large value of Sm-Sm spin exchange (θcw 10K\theta_{cw} ~ - 10 K); however, long-range ordering of the Sm3+Sm^{3+} spins is not established at least down to T = 0.67 K, due to frustration of the Sm3+Sm^{3+} spins on the pyrochlore lattice. The ground state of Sm3+Sm^{3+} ions in both pyrochlores is a well-isolated Kramer's doublet. The higher-lying crystal field excitations are observed in the low-frequency region of the Raman spectra of the two compounds recorded at T = 10 K. At higher temperatures, the magnetic susceptibility of Sm2Ti2O7Sm_2Ti_2O_7 shows a broad maximum at T = 140 K while that of Sm2Zr2O7Sm_2Zr_2O_7 changes monotonically. Whereas Sm2Ti2O7Sm_2Ti_2O_7 is a promising candidate for investigating spin-fluctuations on a frustrated lattice as indicated by our data, the properties of Sm2Zr2O7Sm_2Zr_2O_7 seem to conform to a conventional scenario where geometrical frustration of the spin exclude their long-range ordering.Comment: 24 pages, 6 figures, Accepted for publication in Phys. Rev.

    Critical Temperature Tc and Charging Energy Ec between B-B layers of Superconducting diboride materials MgB2 in 3D JJA model

    Full text link
    The diboride materials MB2 (M = Mg, Be, Pb, etc.) are discussed on the basis of the 3D Josephson junction array (JJA) model due to Kawabata-Shenoy-Bishop, in terms of the B-B layers in the diborides analogous to the Cu-O ones in the cuprates. We propose a possibility of superconducting materials with the MgB2-type structure which exhibit higher critical temperature Tc over 39K of MgB2. We point out a role of interstitial ionic atoms (e.g., Mg in MgB2) as capacitors between the B-B layers, which reduce the charging coupling energy in JJA.Comment: 3 pages, 1 figure included; to be published in J. Phys. Soc. Jpn. 70, No.10 (2001

    Bi2Te1.6S1.4 - a Topological Insulator in the Tetradymite Family

    Full text link
    We describe the crystal growth, crystal structure, and basic electrical properties of Bi2Te1.6S1.4, which incorporates both S and Te in its Tetradymite quintuple layers in the motif -[Te0.8S0.2]-Bi-S-Bi-[Te0.8S0.2]-. This material differs from other Tetradymites studied as topological insulators due to the increased ionic character that arises from its significant S content. Bi2Te1.6S1.4 forms high quality crystals from the melt and is the S-rich limit of the ternary Bi-Te-S {\gamma}-Tetradymite phase at the melting point. The native material is n-type with a low resistivity; Sb substitution, with adjustment of the Te to S ratio, results in a crossover to p-type and resistive behavior at low temperatures. Angle resolved photoemission study shows that topological surface states are present, with the Dirac point more exposed than it is in Bi2Te3 and similar to that seen in Bi2Te2Se. Single crystal structure determination indicates that the S in the outer chalcogen layers is closer to the Bi than the Te, and therefore that the layers supporting the surface states are corrugated on the atomic scale.Comment: To be published in Physical Review B Rapid Communications 16 douuble spaced pages. 4 figures 1 tabl

    Strong covalent bonding between two graphene layers

    Full text link
    We show that two graphene layers stacked directly on top of each other (AA stacking) form strong chemical bonds when the distance between planes is 0.156 nm. Simultaneously, C-C in-plane bonds are considerably weakened from partial double-bond (0.141 nm) to single bond (0.154 nm). This polymorphic form of graphene bilayer is meta-stable w.r.t. the one bound by van der Waals forces at a larger separation (0.335 nm) with an activation energy of 0.16 eV/cell. Similarly to the structure found in hexaprismane, C forms four single bonds in a geometry mixing 90^{0} and 120^{0} angles. Intermediate separations between layers can be stabilized under external anisotropic stresses showing a rich electronic structure changing from semimetal at van der Waals distance, to metal when compressed, to wide gap semiconductor at the meta-stable minimum.Comment: tar gzip latex 4 pages 4 figure

    Antarctic Ice Sheet Elevation Impacts on Water Isotope Records During the Last Interglacial

    Get PDF
    Changes of the topography of the Antarctic ice sheet (AIS) can complicate the interpretation of ice core water stable isotope measurements in terms of temperature. Here, we use a set of idealised AIS elevation change scenarios to investigate this for the warm Last Interglacial (LIG). We show that LIG δ 18 O against elevation relationships are not uniform across Antarctica, and that the LIG response to elevation is lower than the preindustrial response. The effect of LIG elevation‐induced sea ice changes on δ 18 O is small, allowing us to isolate the effect of elevation change alone. Our results help to define the effect of AIS changes on the LIG δ 18 O signals, and should be invaluable to those seeking to use AIS ice core measurements for these purposes. Especially, our simulations strengthen the conclusion that ice core measurements from the Talos Dome core exclude the loss of the Wilkes Basin at around 128 ky

    Temperature dependent Raman and x-ray studies of spin-ice pyrochlore Dy2Ti2O7Dy_2Ti_2O_7 and non-magnetic pyrochlore Lu2Ti2O7Lu_2Ti_2O_7

    Get PDF
    We present here temperature-dependent Raman, x-ray diffraction and specific heat studies between room temperature and 12 K on single crystals of spin-ice pyrochlore compound Dy2Ti2O7Dy_2Ti_2O_7 and its non-magnetic analogue Lu2Ti2O7Lu_2Ti_2O_7. Raman data show a "new" band not predicted by factor group analysis of Raman-active modes for the pyrochlore structure in Dy2Ti2O7Dy_2Ti_2O_7, appearing below a temperature of Tc=T_c=110 K with a concomitant contraction of the cubic unit cell volume as determined from the powder x-ray diffraction analysis. Low temperature Raman experiments on O18^{18}-isotope substituted Dy2Ti2O7Dy_2Ti_2O_7 confirm the phonon origin of the "new" mode. These findings, absent in Lu2Ti2O7Lu_2Ti_2O_7, suggest that the room temperature cubic lattice of the pyrochlore Dy2Ti2O7Dy_2Ti_2O_7 undergoes a "subtle" structural transformation near TcT_c. We find anomalous \textit{red-shift} of some of the phonon modes in both the Dy2Ti2O7Dy_2Ti_2O_7 and the Lu2Ti2O7Lu_2Ti_2O_7 as the temperature decreases, which is attributed to strong phonon-phonon anharmonic interactions.Comment: 28 pages, 9 figures (Accepted for publication in Physical Review B

    Coarse Grained Density Functional Theories for Metallic Alloys: Generalized Coherent Potential Approximations and Charge Excess Functional Theory

    Full text link
    The class of the Generalized Coherent Potential Approximations (GCPA) to the Density Functional Theory (DFT) is introduced within the Multiple Scattering Theory formalism for dealing with, ordered or disordered, metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. The GCPA density functional consists of marginally coupled local contributions, does not depend on the details of the charge density and can be exactly rewritten as a function of the appropriate charge multipole moments associated with each lattice site. A general procedure based on the integration of the 'qV' laws is described that allows for the explicit construction the same function. The coarse grained nature of the GCPA density functional implies great computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the Charge Excess Functional (CEF) theory [E. Bruno, L. Zingales and Y. Wang, Phys. Rev. Lett. {\bf 91}, 166401 (2003)] which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art LAPW full-potential density functional calculations for 62, bcc- and fcc-based, ordered CuZn alloys, in all the range of concentrations. These extensive tests show that the discrepancies between GCPA and CEF are always within the numerical accuracy of the calculations, both for the site charges and the total energies. Furthermore, GCPA and CEF very carefully reproduce the LAPW site charges and the total energy trends.Comment: 19 pages, 11 figure

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure
    corecore